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ABSTRACT

We provide new results enabling robust interferometric image reconstruction

in the presence of unknown aperture piston variation via the technique of

Redundant Spacing Calibration (RSC). The RSC technique uses redundant

measurements of the same interferometric baseline with different pairs of aper-

tures to reveal the piston variation among these pairs. In both optical and

radio interferometry, the presence of phase wrapping in the measurements is

a fundamental issue that needs to be addressed for reliable image reconstruc-

tion. In this paper, we show that these ambiguities affect recently-developed

RSC phasor-based reconstruction approaches operating on the complex visi-

bilities, as well as the traditional phase-based approaches operating on their

logarithm. We also derive new sufficient conditions for an interferometric ar-

ray to be immune to these ambiguities in two different senses: immunity up

to an image shift in the reconstruction, and absolute immunity. We show the

implications of these results for imaging via phase closures and extend existing

results involving the classical three-baseline closures to generalized closures.

Furthermore we show that absolute immunity is conferred upon arrays whose

interferometric graph satisfies a certain loop-free condition. We specify this

condition and, for cases in which this condition is not satisfied, we provide a

simple algorithm for identifying those graph cycles which prevent its satisfac-

tion. Finally we apply this algorithm to diagnose and correct a member of a

pattern family popular in the literature.
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1 INTRODUCTION

Optical interferometry is a multi-aperture imaging technique which is attracting increasing

interest in the astronomical and remote-sensing communities. The appeal of this technique

is primarily due to the high resolution it affords relative to single-aperture imaging. Namely,

the angular resolution of a single aperture is limited by diffraction to λ
D
, where λ is the

wavelength of the light, and D is the diameter of the aperture. On the other hand, the

achievable angular resolution of an interferometer is instead given by λ
Bmax

, where Bmax

is the maximum spatial separation of any two telescopes in the array. Therefore with in-

terferometry one can achieve the same high resolution offered by an extremely large (and

often prohibitively-costly) telescope by interfering light from several telescopes of practical

size. Optical interferometers image a scene by sampling the 2D Fourier Transform of the

scene. Several excellent surveys exist which describe the concept of interferometry, including

Labeyrie et al. (2006), Glindemann (2011). Each pair of telescopes measures a single angular

spatial frequency of 2πb
λ

radians, where b is the vector difference of the telescope positions,

which is known as a baseline. For an array of N apertures, the data set then consists of all(
N
2

)
such measurements.

A principal challenge in interferometry is variation in the complex gains among the mul-

tiple apertures of the interferometer. In radio interferometry, this variation can arise from

differences among the analog components of the antenna elements (e.g. cable length differ-

ences) in the array. In optical interferometry, atmospheric turbulence distorts the wavefronts

arriving at each telescope aperture so that their effective path lengths from the target (or op-

tical pistons) are altered by a random, non-uniform amount. For simplicity, we will heretofore

refer to such aperture-specific phase variation as optical path difference (OPD), regardless

of its source. As a result of OPD, the Fourier component measured by apertures i and j is

given by yij = |yij|ejθ̃ij , in which θ̃ij = (θij + δϕij) mod 2π, and θij is the true Fourier phase

at spatial frequency
bij

λ
, and δϕij represents the OPD observed between apertures i and j.

One approach to eliminate OPD is to form triple products of the Fourier components along

the sides of a baseline triangle (e.g. b12, b23, and b31). Note that the OPD cancels in these

⋆ Email: bkurien@ll.mit.edu

c⃝ 2002 RAS, MNRAS 000, 1–28
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products and hence, like the Fourier magnitudes, these so-called bispectra are OPD-invariant

observables. However, for a non-redundant array with
(
N
2

)
distinct baselines, recovery of the

Fourier phases from the bispectra phases is an ill-posed problem since there are only
(
N−1
2

)
independent bispectra (Readhead et al. 1988). Successful bispectra-based image reconstruc-

tion remains feasible in spite of this ill-posedness (see e.g. Thiébaut (2013), Besnerais et al.

(2008)), but in this case prior constraints (e.g. on the image support) must be enforced to

regularize the reconstruction.

An alternative and intrinsically well-posed approach to prior-regularized reconstruction

is to use baseline redundancy to explicitly solve for OPD variation; an array with baseline

redundancy contains repeated instances of the same baseline involving distinct aperture

pairs. Since Fourier phases can be assumed to be equal for all repeated baselines, an observed

difference amongst their corresponding measurements exposes the contribution of the OPD.

This idea of using redundant arrays to calibrate out OPD variation, known as redundant

spacing calibration (RSC), was developed in works such as those by Arnot et al. (1985)

and Greenaway (1990). In recent years, innovation in optical technology has engendered a

revival of interest in the RSC technique. The simultaneous (or Fizeau-style) measurement of

fringes on a common focal plane has long been a popular method of acquiring many baseline

measurements in an economical manner. However, the Fizeau method had been incompatible

with RSC techniques since the fringes formed by each set redundant baselines would alias

on the focal plane. An elegant solution to this problem was proposed by Perrin et al. (2006).

This work developed the idea of segmenting the entrance pupil of a single telescope into

an RSC arrangement of sub-pupils from which the light was then coupled via single mode

fiber to a non-redundant exit pupil, thereby permitting unambiguous and simultaneous

fringe detection for an RSC array. A reconstruction algorithm for this architecture was then

proposed in Lacour et al. (2007). Even more recently, RSC has been implemented as the

calibration scheme of choice for several radio interferometers: the Donald C. Backer Precision

Array for Probing the Epoch of Reionization (PAPER) in South Africa (see Ali et al. (2015)),

the MIT Epoch of Reionization (MITeOR) in the United States (see Zheng et al. (2014)),

and the Ooty Radio Telescope (ORT) in India (see Marthi & Chengalur (2014)).

As will be shown below, N − 3 independent redundant relations are required for unique

determination of atmosphere and Fourier phases - a condition we will refer to as critical

redundancy. An oft-cited drawback of the RSC approach is that it reduces the number of

unique spatial frequencies measured by the interferometer. However, as Figure 1 illustrates,
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Figure 1. Fraction of redundant baselines required for critical redundancy vs. aperture count

the fraction of distinct uv-samples sacrificed for critical redundancy becomes increasingly

negligible as the number of apertures in the array increases. Nevertheless the RSC technique

presents other challenges which must be overcome for reliable imaging. Central among these

challenges is the problem of integer phase ambiguities which arise from the fact that the

interferometric phase is only known modulo 2π. In this paper, we describe these ambiguities

and how they can be mitigated using a combination of lattice theory algorithms and careful

array design. We will see that these ambiguities have a fundamental presence; namely, they

exist whether the calibration strategy works with complex visibilities (which we call the

phasor approach) directly, or their respective logarithms (which we call the phase approach).

The paper is organized as follows. In Section II, we review previous work on the integer

ambiguity problem, and discuss its presence in both phasor and phase approaches. We also

provide new mathematical conditions for an aperture pattern to be wrap-invariant in the

sense that it is immune to these integer ambiguities. These results are founded upon the

well-known Smith Normal Form (SNF) of an integer matrix. We show the implications

of these results on imaging with three types of interferometric observables: the baseline

phase measurements, their traditional closure phases, and generalized closure phases. In

Section III, we relate these mathematical conditions to conditions on the aperture pattern

itself. Namely we show that wrap-invariance is conferred upon arrays satisfying a certain

loop-free condition. As an illustrative example, we diagnose a pattern belonging to the

popular Y -pattern class and remedy it to be loop-free. Finally, in Section IV, we show that

the computationally-complex SNF-based approach for ambiguity resolution is actually not

necessary for wrap-invariance in many cases, as long as a piston-dependent image shift can

be tolerated. We provide physical intuition for this simpler sufficient condition for wrap-
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invariance in terms of a generalized notion of the well-known concept of closure phase.

Finally we summarize our results in Section V.

2 PHASE WRAPPING AMBIGUITIES IN RSC IMAGE

RECONSTRUCTION

2.1 The Phase Approach

The traditional approach to RSC reconstruction operates on the measured baseline phases

(see e.g. Arnot et al. (1985), Greenaway (1994)). To illustrate the approach, let us consider an

interferometer which operates at a wavelength λ with two apertures (say, i and j) separated

by a vector baseline distance of bij. In the absence of any optical path difference, the

interference pattern formed by these two apertures encodes a sample of the object’s Fourier

Transform at spatial frequency
bij

λ
. Let the true Fourier phase (which we will refer to as

object phase), measured by this interference pattern be denoted as θij. The measured phase

is given by:

βij = θij + ϕj − ϕi + 2πe (1)

where ϕj − ϕi is the optical path difference between apertures j and i, and e is unknown

phase wrap integer arising from the fact that interferometric phase measurements are only

known modulo 2π.

Consider an interferometric array which simultaneously makes many such measurements

amongst its N apertures. Suppose that of the array’s
(
N
2

)
baselines, d of them are distinct.

Further suppose we have a solution set {ϕi} and {θij} for these equations. Let ri denote the

vector position of the i-th aperture. As noted by several authors (see, e.g. Wieringa (1992)),

we can obtain another valid solution set simply by replacing each ϕi with ϕp
i = ϕi+ϕ0+z ·ri,

and each θij with θpij = θij − z · (rj − ri), for arbitrary ϕ0 and z. Since the free vector z is a

two-parameter vector representing the inherently-ambiguous position of the image within the

Field-of-View and the free parameter ϕ0 is simply a scalar piston offset, the kernel of the RSC

system is three-dimensional. Therefore the RSC system contains d unknown distinct object

phases and N unknown aperture pistons, and is rank-deficient by at least 3. This implies

that there are at most (d+N − 3) linearly-independent equations in the RSC system, and

hence at most N − 3 redundant relations can be linearly-independent. We will assume for

the remainder of the paper that our array contains N − 3 independent relations. Under this

c⃝ 2002 RAS, MNRAS 000, 1–28
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Figure 2. 5-Aperture Redundant Array

assumption, we can then solve for a particular solution of this system by arbitrarily setting

two object phases (whose spatial frequencies are not co-linear) and one piston phase. This

particular solution will then differ from the true solution by a phase ramp in the Fourier

domain, corresponding to an image shift in the spatial domain.

As an example, consider the simple array in Figure 2. There are
(
5
2

)
= 10 baselines, of

which 4 are redundant. A critical array of 5 apertures would have 2 redundancies. Therefore

this array possesses more redundancies than necessary (call it strongly redundant), and we

anticipate that the resulting system will be overdetermined.

The measurement equations associated with this array can be written in matrix form:



1 0 0 0 0 0 1 −1 0 0 0

0 1 0 0 0 0 0 1 −1 0 0

0 0 1 0 0 0 0 0 1 −1 0

0 0 0 1 0 0 0 0 0 1 −1

0 0 0 0 1 0 1 0 −1 0 0

0 0 0 1 0 0 0 1 0 −1 0

0 0 −1 0 0 0 1 0 0 −1 0

−1 0 0 0 0 0 0 0 1 0 −1

0 0 0 0 0 1 0 1 0 0 −1

0 1 0 0 0 0 1 0 0 0 −1





θ12

θ23

θ34

θ45

θ13

θ25

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5



= β + 2πe (2)

Denoting the matrix above as M, we can write this system in compact form as:

M

 θ⃗

ϕ⃗

 = β + 2πe (3)

Since the interferometer is sensitive only to optical path differences amongst its apertures

as opposed to their absolute values, one of the ϕ’s (say, ϕ1) can be set to zero arbitrarily.

Also, as noted above, we can set two of the object phases (say, θ1 and θ2) arbitrarily. After
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removing the corresponding three columns from the matrix above, we are left with a full-

rank matrix M̃. If the wrap vector e can be determined, the measurement matrix M̃ will

admit a unique solution, and the RSC phase solution is in hand. We hence focus our analysis

on determination of the wrap vector.

The example above illustrates that the general phase measurement matrix will have two

sets of columns: one corresponding to the object phases, and one corresponding to the path

differences. Adopting the notation of Lannes & Anterrieu (1999), let K denote the subspace

spanned by the first set of columns, and L the subspace spanned by the second set.

If we let n =
(
N
2

)
be the number of baselines in the array, the phase measurement matrix

M̃ will be of size n-by-(d + N − 3). For a strongly-redundant array like the one in the

example above, the column-space K + L of the matrix will clearly not span Rn. Therefore

the wrapped measurement vector β will not in general fall in the the subspace K + L (and

potentially can be quite far from it). In the absence of measurement noise, we can unwrap

these measurements by identifying those integer correction vectors e for which ye = β+2πe

lies in K + L. In the presence of noise, on the other hand, the unwrapped vector will not

generally lie in K+L (but for low-to-moderate noise will be in the vicinity). Thus we search

for vector(s) ye which are as close to K + L as possible in a weighted least-squares sense

(Lannes & Anterrieu 1999), i.e. we search for the vector

τRSC =

 θ̂RSC

ϕ̂RSC

 = argmine,θ⃗,ϕ⃗

∥∥∥∥∥∥W
ye −M

 θ⃗

ϕ⃗

∥∥∥∥∥∥
2

(4)

where W is the weighting matrix1. If we let Σ denote the phase measurement covariance

matrix and set W = Σ−1, this is equivalent to searching for vectors e which minimize the

projection of a whitened measurement W
1
2ye = W

1
2 (β + 2πe) onto the space (K + L)⊥W :=

ker((W
1
2M̃)T ). Specifically we seek to minimize:

f(e) = ||PWW
1
2 (β + 2πe)||

2
(5)

where PW is a matrix representing the orthogonal projection from Rn onto (K + L)⊥W .

Letting e′ = −e, we can rewrite the above objective function as:

f(e′) = ||PWW
1
2 (β − 2πe′)||

2
= ||PWW

1
2β − 2πPWW

1
2e′||

2
(6)

1 If this approach successfully unwraps the measurements, the least-squares solution associated with this unwrapped measure-

ment vector will be the Best Linear Unbiased Estimator (BLUE) for the object phase vector (see, e.g. Kay (1993))
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Lannes & Anterrieu (1999) showed that this optimization problem is equivalent to the

so-called closest vector problem in the theory of lattices. We will define a lattice L(Zn) as

the set of points generated by integer combinations of the column vectors of a matrix L.

Letting P̃ = PWW
1
2 , our optimization problem then amounts to the following: Find the

lattice point in P̃(Zn) which is closest to P̃β. A compact representation of the lattice Γ is

given by:

Γ =


m6n−(d+N−3)∑

i=1

aivi | ∀ai ∈ Z

 (7)

where {vi} are linearly-independent and together form a basis of the lattice. Given the lattice

basis, several algorithms exist for finding the closest lattice point to a specified vector. A

popular class of algorithms, known as the Sphere-Decoding algorithms, are efficient searches

for the closest lattice point within a hypersphere of a certain radius centered on the input

vector (see e.g. Agrell et al. (2002)). For the simulations in this paper, we instead use the

lower-complexity Babai Nearest Plane (Babai-NP) algorithm (Babai 1986). For lattice bases

which are nearly orthogonal (such as those we use for our simulations), this algorithm offers

reliable, albeit not guaranteed, performance in practice.

Suppose we have found a basis for the lattice P̃(Zn), and we have solved the Closest

Vector Problem for a given measurement vector β. Let b∗ be the output of the Babai

Nearest Plane Algorithm - i.e. it is the lattice point which is the closest to β. We now seek

to solve for the wrap vector corresponding to this lattice point, i.e. we seek a solution to:

b∗ = P̃ê (8)

Note that P̃ is a (weighted) projection matrix and thus not full-rank, and therefore there

will be infinitely-many solutions to this equation. The Closest-Vector-Problem algorithm will

provide one particular solution ep. The complete set of solutions is then given by:

ê = ep + eh (9)

where eh is any integer vector in the kernel of P̃. Suppose we choose one such vector eh

and correct our phase measurement vector accordingly. The corrected phase measurement

vector can be written as:

β̂∗ = β + 2π(ep + eh) (10)

c⃝ 2002 RAS, MNRAS 000, 1–28
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Lemma 2.1: eh ∈ K + L,∀eh
Proof: The fact that eh ∈ ker(PWW

1
2 ) implies that W

1
2eh ∈ ker(PW ). This in turn implies

thatW
1
2eh ∈ im(W

1
2M) and hence that eh ∈ im(M) sinceW

1
2 is invertible by construction.

�
The unwrapped vector β̂∗ therefore differs by some 2πe∗h in K + L from the correctly-

unwrapped vector y∗, i.e.

β̂∗ = y∗ + 2πe∗h (11)

We now examine the effect of this residual error on the ultimate least-squares solution,

which is easily obtained in two steps. We first project the unwrapped vector onto K + L.

Noting that the e∗h term in β̂∗ is already in K + L, we obtain:

β̂∗
K+L = W− 1

2 (I−PW )W
1
2 β̂∗ = y∗

K+L + 2πe∗h (12)

where y∗
K+L is the projection of y∗ onto K + L. We then solve the system:

M

 θ⃗

ϕ⃗

 = β̂∗
K+L (13)

where we have chosen to work directly with the matrix M instead of M̃ for purposes of

generality. Since M is rank-deficient (by 3), there will be infinitely-many solutions to this

system. We will choose a solution which will preserve the integrality of the error term e∗h if

possible, thereby yielding a final RSC solution which is 2πc away from the true solution for

some integer vector c. To achieve this, we rely on the integer matrix decomposition known

as the Smith Normal Form, which is described in the following Theorem:

Theorem (Smith Normal Form) (Smith 1861): Let A be a nonzero m-by-n integer matrix

with rank r. There exist unimodular (and thus invertible) matrices m-by-m and n-by-n

matrices U and V respectively such that the matrix product D = UAV is a diagonal

matrix whose diagonal entries Dii (the so-called elementary divisors) are zero for i > r.

Moreover, the product of the elementary divisors is the greatest common divisor (gcd) of all

r-by-r minors of A. The proof of this Theorem can be found in textbooks such as Newman

(1972). �
Let us compute the Smith Normal Form (SNF) of our matrix M:

M = UMDMVM (14)

c⃝ 2002 RAS, MNRAS 000, 1–28
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where the r diagonal elements {di} of DM are the elementary divisors of M.

We can now re-write Equation (13) above as:

DMVM

 θ⃗

ϕ⃗

 = U−1
M β̂∗

K+L (15)

We can choose the following solution to Equation (15):

τRSC = V−1
M D+

MU−1
M β̂∗

K+L (16)

where D+
M denotes the pseudo-inverse of D. The resulting error is then clearly:

eRSC = V−1
M D+

MU−1
M e∗h (17)

Lemma 2.2: Let u = U−1
M e∗h . The residual wrap error eRSC equals 0⃗ mod 2π if and only if

mod (ui, di) = 0,∀i 6 r. The proof of this Lemma is an adaptation of a standard proof which

can be found in most textbooks covering linear Diophantine equations (see, e.g. Newman

(1972)). �
From this Lemma, the following Corollary is clear:

Corollary 2.3 (Sufficient condition on SNF of RSC matrix for wrap-invariance):

If the elementary divisors of the measurement matrix M corresponding to a certain aperture

pattern are all 1, the RSC solution defined by τRSC is immune to phase-wrapping error.

�
RSC patterns consisting of apertures placed randomly on a Cartesian grid appear to

satisfy this sufficient condition with high probability. We conducted a simple experiment in

which 15 apertures were randomly placed on a 10-by-10 grid. Out of 256 placements, 66

were valid RSC patterns (i.e. possessed at least critical redundancy), and of these, only 2

had non-unity elementary divisors.

It is noteworthy that in cases where Corollary 2.3 holds, we may be able to compute wrap-

invariant RSC solutions directly (i.e. without actually computing the SNF of M). Namely,

since β̂∗
K+L is in the subspaceK+L, we can obtain an RSC solution by solving a subset of the

equations in Equation (13). Let I denote the indices of a set of r linearly-independent rows

of M, and consider the sub-matrix M̃I formed by selecting only these rows and eliminating

columns correspond to two arbitrarily-set object phases and one arbitrarily-set aperture

phase. Since M̃I is then invertible, we can form a possible RSC solution as:

τ pRSC = M̃−1
I β̂∗

I,K+L (18)

c⃝ 2002 RAS, MNRAS 000, 1–28
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The resulting error δ in the final RSC solution is given by:

δ = M̃−1
I 2πe∗I,h (19)

The error will consist of trivial 2π errors if M̃−1
I contains only integer elements. It is

well-known that matrices with unitary determinant (so-called unimodular matrices) have

inverses with only integer elements. We thus arrive at the following sufficient condition for

the solution error to be wrap-invariant (i.e. equal to zero modulo 2π):

Proposition 2.4 (Sufficient condition on RSC sub-matrix for wrap-invariance):

If there exists a unimodular r-by-r sub-matrix of M, the RSC solution τ pRSC will be wrap-

invariant.

Note that no such unimodular submatrix will exist if any of the r elementary divisors

of M are not equal to 1, since in this case the gcd of all r-by-r minors will be greater than

1 (see Smith Normal Form Theorem above). The implications of this Proposition on array

design will be made clear in Section 3.

The SNF has been been applied to the RSC phase problem before (Lannes 2003).

Whereas we have chosen to apply SNF directly to the baseline measurement matrix, the

approach taken by Lannes (2003) is to instead treat the piston-invariant phases of the bis-

pectra (the so-called closure phases) as the fundamental observables from which the object

phases can be inferred via the relation:

Co→cθ⃗ = ycl + 2πecl (20)

where ycl are the wrapped closure phases, ecl is the corresponding wrap vector, and Co→c

is the matrix mapping the distinct object phases in the array to closure phases. Lannes

(2003) hence applies the SNF to the closure matrix Co→c. By direct analogy to Corollary

2.3, note that if the elementary divisors of Coc are all 1, then the pattern is wrap-invariant.

Using closure phases as observables can be advantageous in low-light scenarios in which

there is not sufficient SNR in a single atmospheric coherence time to reliably measure the

baseline phases. To overcome this low per-frame SNR, atmosphere-invariant observables

such as the bispectra can be integrated over many frames to build sufficient SNR, and their

respective closure phases used as reliable phase measurements. Since the baseline phases are

known modulo 2π, the linear combinations of them which comprise the closure phases are

also known modulo 2π. In order to relate this condition to Corollary 2.3, let us first define

c⃝ 2002 RAS, MNRAS 000, 1–28



12 B.G. Kurien et al.

Figure 3. Distinction between spanning tree baselines (thick, solid) and loop entry baselines (thin, dotted)

another closure matrix Cm→c which instead maps the phase measurements to closure phases.

This mapping consists of equations of the form:

y123 = β12 + β23 − β13 (21)

where y123 is the closure phase associated with apertures 1, 2, and 3, and the βij are the

associated baseline phases (see Equation (1)). Of the
(
n
3

)
possible closure phases, at most(

n−1
2

)
can be linearly-independent (see e.g. Readhead et al. (1988)). One commonly-chosen

set of such linearly-independent relations consists of all the closure triangles involving a given

aperture A, and this is the set selected by Lannes (2003). Cm→c is therefore an
(
n−1
2

)
-by-

(
n
2

)
matrix. Lannes (2003) accordingly provides a convenient grouping of the baselines into two

categories: (1) spanning tree baselines which connect aperture A to all other apertures, and

(2) loop entry baselines which provide the closure for these spanning tree baselines. This

categorization is depicted in Figure 3.

Given this categorization, we can decompose Cm→c into corresponding blocks as:

Cm→c =
[
Ĉm→c I(n−1

2 )

]
(22)

where Ĉm→c contains the spanning tree contributions to the matrix (which appear in mul-

tiple closures), and I(n−1
2 ) is the

(
n−1
2

)
-by-

(
n−1
2

)
identity matrix representing the loop-entry

contributions (each of which appears in only one closure). The following property follows

from this block form expression:

Lemma 2.5: The elementary divisors of Cm→c are all 1.

Proof: Since we have chosen a linearly-independent subset of closure relations, r = rank(Cm→c) =(
n−1
2

)
. There exists a r-by-r minor (namely, I(n−1

2 )) which is equal to 1. Therefore the gcd of

all r-by-r minors is 1, and therefore from the Smith Normal Form Theorem, all elementary

divisors must be 1. �
Let us now relate Cm→c to the matrix Co→c used by Lannes (2003). Recall from the

discussion of bispectra in Section 1 that the closure relations eliminate piston differences
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Resolving phase ambiguities in the calibration of redundant interferometric arrays 13

in the measurements so that Cm→c annihilates the subspace L, i.e. the space spanned by

the columns of M corresponding to ϕ⃗. Defining Mθ as the submatrix of M containing the

columns corresponding to θ⃗, we have

Cm→cM

 θ⃗

ϕ⃗

 =
[
Co→c 0

] θ⃗

ϕ⃗

 (23)

where Co→c = Cm→cMθ. Co→c is an
(
n−1
2

)
-by-d matrix which is rank-deficient by two 2.

Then by direct analogy to Equation (13), we can obtain valid RSC object phase solutions

by solving:

Cm→cM

 θ⃗

ϕ⃗

 =
[
Co→c 0

] θ⃗

ϕ⃗

 = y∗
cl + 2πe∗h,cl (24)

where y∗
cl is the true unwrapped closure vector and 2πe∗h,cl is the residual integer wrapping

error vector after applying the Babai NP algorithm to solve the CVP problem associated

with matrix Cm→cMθ and 2πecl. Note that if we find a vector θ⃗∗ satisfying Equation (24), it

will clearly also satisfy the relationCo→cθ⃗
∗ = y∗

cl+2πe∗h,cl of Lannes (2003). Note furthermore

that we can solve the equation above in two separate integer-preserving steps of the form of

Equation (16), the first involving the SNF decomposition of Cm→c, and the second involving

that of M. Since the elementary divisors of Cm→c are all 1 by construction (by Lemma 2.5)

and hence the first step is thus integer-preserving, wrap-invariance again amounts to whether

or not all elementary divisors ofM are 1. Therefore we have the following Proposition relating

wrap invariance for closure measurements to that for raw phase measurements:

Proposition 2.6 (Sufficient condition for wrap-invariance of closure-based

RSC): If the elementary divisors of the phase measurement matrix M are all 1, then the

closure-based RSC solution will be wrap-invariant. �
We remark in passing that although the preceding analysis was presented in the context

of the traditional three-aperture closure, it applies directly to the case of closures involving an

arbitrary number of sides. As an example, consider the pattern shown in Figure 4. A spanning

tree for the pattern consisting of the short baselines in an array is depicted. Let {ϕsp}

denote the aperture phase differences in these n − 1 spanning tree baselines. Note that all

2 The kernel of Co→c is a two-dimensional subspace of the three-dimensional kernel of M. To see this, note that each solution

set to Equation (20) above remains valid after replacing each θij with θpij = θij − z · (rj − ri)

c⃝ 2002 RAS, MNRAS 000, 1–28



14 B.G. Kurien et al.

Figure 4. Bootstrapping phase of a low-SNR baseline (green) with subset (blue) of high-SNR baselines from spanning tree
baselines (black)

aperture phase differences in the array can be expressed as linear combinations of the {ϕsp}.

If the aperture phase differences are known reliably via measurements of the spanning tree

baselines, we can use these measurements to cancel the aperture phase differences in all other

measurements (of which one example is shown in green). The idea of using such generalized

closure phases (Martinache 2010) is indeed the mathematical foundation for the promising

technique known as baseline bootstrapping in which high-fidelity phase measurements of

several high-SNR baselines (typically the short baselines) to cancel the atmosphere on each

lower-SNR (and hence lower fidelity) baseline.

Note that for an arbitrary n-aperture pattern, there will in general be n−1 spanning tree

baselines and thus
(
n
2

)
− (n− 1) =

(
n−1
2

)
generalized closures, each involving a distinct clos-

ing (or loop-entry) baseline. Therefore the resulting measurement matrix can be expressed

exactly as in Equation (22) above and hence the preceding analysis holds.

While this section has considered a few possibilities for phase observables, relating mathe-

matical conditions for wrap invariance to a physical condition on aperture placement is more

intuitive when considering the raw phase measurements as opposed to their closures. For

this reason, for the remainder of the paper we will work directly with the baseline phases and

their associated wrapping errors. In particular, we will begin by connecting these wrapping

errors with analogous ambiguities in recently-developed phasor-based approaches.

2.2 The Phasor Approach

Though traditional treatments employ the phase approach of the previous section which

operates on baseline phases, recent papers (e.g. Marthi & Chengalur (2014), Liu et al. (2010))

have shown that a non-linear least squares (NLS) approach which operates at the phasor

level is superior in accuracy. Liu et al. (2010) developed a Gauss-Newton-type NLS solver

and showed it produced unbiased phase estimates, in contrast with the biased ones provided
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by the phase approach. Marthi & Chengalur (2014) proposed a lower-complexity alternative

to the same and showed that it achieved performance near the Cramer-Rao Bound.

The Phasor Approach employs the following measurement model:

Vij = gig
∗
j fij + nij (25)

where Vij is the complex visibility observed between apertures i and j, gi = |gi|ejϕi and

gj = |gj|ejϕj are the complex gains of these apertures, fij is the true complex visibility

measured by this pair, and n is complex measurement noise. Note that the phase difference

between gi and gj is simply the optical path difference between apertures i and j introduced

in the previous section. Given this model, NLS approaches attempt to find a set of complex

phasors {gi} and {f} which minimize an objective function of the form:

Λ =
∑
i

∑
j>i

wij||(Vij − gig
∗
j fij)(V

∗
ij − g∗i gjf

∗
ij)|| (26)

Minimization of Λ with respect to the unknowns (i.e. distinct object and antenna com-

plex gains) yields the following conditions, as reported by Marthi & Chengalur (2014) in

the context of radio interferometry, and by Lacour et al. (2007) in the context of optical

interferometry:

gk =

∑
j ̸=k wkjgjf

∗
kjVkj∑

j ̸=k wkj|gj|2|fkj|2
(27)

fb =

∑
j>k g

∗
kgjVkj∑

j>k wkj|gk|2|gj|2
(28)

where the {fb} are the true complex visibilities of the distinct object phases in the array.

Due to the circularity of these definitions, these equations must be solved iteratively.

Starting from an initial guess for all phasors, Equation (27) is solved to obtain a better

estimate for the {gk} and then these {gk} are used to obtain refined estimates of the {fb}

through Equation (28). In the next iteration, these {fb} are used to further refine {gk}, and

so on.

As has been noted before (see e.g. Lannes & Anterrieu (1999)), there are strong con-

nections between phase- and phasor-based approaches. To see this, let z be the vector of

products {gig∗j f|i−j|} which minimize Λ. We rewrite Equation (26) as:
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Λ =
∑
i

∑
j>i

wij||(Vij − zij)(V
∗
ij − z∗ij)|| (29)

Define rij = ej2πnijzij for an arbitrary integer nij and r as the vector containing the rij.

Note that r also minimizes Λ since the rotations {ej2πnij} do not change the values of the

residuals in Λ. Hence any set of rotated phasors {g̃i} and {f̃|i−j|} whose products produce

the vector r will also minimize Λ. Note that the set of such valid phase vectors (i.e. the

concatenations of possible {∠g̃i} and {∠f̃|i−j|}) includes the set of phase approach solutions

τRSC in Section 2 with β̂∗
K+L = ∠r (where ∠r is the vector of the phases of the complex vector

r). In other words, integer ambiguities present in the phase approach do not disappear in the

phasor approach; in fact, the unwrapped candidate solutions of the phase-based approach

correspond to local minima of the phasor-based objective.

Though the capacity of the phasor approach to produce superior accuracy relative to the

phase approach has been demonstrated, the former’s convergence issues can be mitigated via

initialization with the results of the latter (see e.g. Liu et al. (2010), and Zheng et al. (2014)).

In such cases, we can use Corollary 2.3 from the previous section to assess the viability of

the phase-approach solutions: if the elementary divisors of the matrix M associated with

the array are all unity, the phasor-based solutions will differ from the true solution by a

multiple of 2π. Otherwise, non-trivial errors are possible in the solution.

3 IMPLICATIONS OF WRAP AMBIGUITIES ON PATTERN DESIGN

In this section we use the mathematically-sufficient conditions for wrap invariance from

the previous section to show that aperture patterns whose interferometric graph satisfies a

certain loop-free condition are wrap-invariant. Here we define the interferometric graph in

the standard way: it is simply the graph formed by connecting the array’s apertures (the

nodes of the graph) with edges representing the array’s baselines.

This condition is founded on the sufficient condition in Proposition 2.4 and the following

definition of the matrix determinant. This definition is given in many linear algebra texts

(see e.g. Bretscher (2001)).

Definition 3.1 : Suppose we have an n-by-n matrix A. Define a pattern as a selection

of n entries of the matrix in which there is only one chosen entry in each row and one

in each column of the matrix. Furthermore, we denote a pair of numbers in a pattern as
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inverted if one of them is located above and to the right of the other. Then we can obtain

the determinant of A by summing the products associated with all patterns with an even

number of inversions and subtracting the products associated with all the patterns with an

odd number of inversions.

Our goal will be to find conditions under which a given r-by-r sub-matrix M̃I contains

only one pattern with a non-zero product, in which case the determinant will be ±1 from

the definition above. Consider one such M̃I and note that within the fully-connected in-

terferometric graph associated with M, we can identify a sub-graph G containing only the

measurements in M̃I . This will be done by sequentially identifying those matrix entries

which must be part of a pattern with a non-zero product. Note that some of these spe-

cial entries from the matrix M̃I can be identified immediately. Namely, all non-redundant

measurements contain a singleton ±1 in the column associated with their object phase. All

non-zero patterns must clearly contain this ±1 and so we can select these singleton object-

phase entries as guaranteed participants in a non-zero pattern. Moreover, all measurements

containing a leaf node (i.e. a node with a single connection) in G contain a singleton ±1 in

the column associated with their leaf node. All non-zero patterns must clearly contain this

±1 as well. Thus we can also select these leaf node entries as guaranteed participants in a

non-zero pattern.

There may be cascading implications of such singleton measurements. To illustrate this,

consider the scenario shown in Figure 5. A simple RSC array is shown on the left. A subset

of the baselines in one possible linearly-independent sub-matrix MI is depicted. Here we

intentionally defer selection of the arbitrarily-set phases until later for purposes of generality.

A simplified depiction of the matrix MI is shown in which all non-zero entries have been

colored black and all zero entries have been colored white for simplicity. In Step A of the

reduction process, object phase θ5 is selected for participation (i.e. its matrix entry factored

as common to all non-zero patterns) since it is a singleton object phase. Its corresponding

row (i.e. row 5) in MI is then eliminated from participation since the remaining entries in

this row cannot participate in a pattern (by definition of a pattern). In Step B, the aperture

6 entry ϕ6 in row 5 is selected since it has become a leaf node in the pattern, and row 5 can

then be eliminated. Then in Step C, object phase θ4 is then selected by virtue of becoming a

singleton object phase, and row 4 is then eliminated. This selection/elimination process can

be repeated beyond the steps shown in the Figure, until either no leaf nodes and singleton
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Figure 5. Example: Reducing an aperture pattern and associated matrix to identify Persistent Loop(s)

object phases remain, or there are no baselines left to eliminate. We formalize the pattern

reduction process in Algorithm 1 below.

Algorithm 1 Pattern Reduction Algorithm

Require: R {where R is the set of the baselines corresponding to MI , where I denotes the

indices of a linearly-independent subset of d+N − 3 rows of M}

while |R| > 0 do

1. Leaf Nodes

1.1 remove any remaining baselines containing leaf nodes from R

1.2 add the associated apertures to the list N

2. Singleton Object Phases

2.1 remove any remaining baselines containing singleton object phases from R

2.2 add the associated object phases to the list O

if no baselines removed in the current iteration then

return PERSISTENT

end if

end while

return LOOPFREE

We can see that any baseline in an interferometric graph which does not belong to a loop

will be eliminated in the reduction process, and its corresponding matrix entries factored.

The only structures in the graph that persist after this reduction are sets of loops with a

certain property. Namely we define a persistent loop set as a set of loops that contains at
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least two instances of every baseline contained in the set. (A set can consist of any number of

loops, including one). With this definition, absolute invariance may be possible if the graph

of the redundant baselines does not contain any persistent loop sets. Algorithm 1 returns

PERSISTENT if persistent loops exist and LOOPFREE if the pattern is completely reduced

and therefore free of persistent loops.

Note that in the latter case, we will have eliminated r rows from MI . Since each baseline

elimination is associated with object phase or aperture selection from distinct columns, and

MI contains r + 3 columns, there will be exactly three extraneous columns not involved

in the reduction process. The r-by-r submatrix obtained by selecting the non-extraneous

columns (i.e. those corresponding to the selected object phases and leaf nodes in O and N ,

respectively) will then be unimodular by virtue of having a single non-zero pattern revealed

by the reduction process. Having ensured the existence of a unit r-by-r minor, we have hence

confirmed the elementary divisors must be all 1, and hence that the pattern is wrap-invariant

(by Corollary 2.3). We summarize the sufficient condition as follows:

Proposition 3.2 (Sufficient conditions on aperture pattern for wrap-invariance):

Consider the graph of an aperture pattern which contains d distinct baselines and any set of

N−3 linearly-independent redundant baselines. If this graph does not contain non-persistent

loop sets (in the sense defined above), the matrix M̃I formed by these independent mea-

surements will be unimodular. As a result Proposition 2.4 from Section 2 will hold, thereby

guaranteeing that the aperture pattern is wrap-invariant.

We will now apply Algorithm 1 to the example pattern shown in the left panel of Figure

6. This pattern belongs to one of the more popular array classes in the interferometry

literature: the so-called Y-patterns (see e.g. Arnot et al. (1985), Blanchard et al. (1996),

Labeyrie et al. (2006), Eastwood et al. (2009), Liu et al. (2014)). The corresponding spatial,

or UV, sampling is provided in the center panel. Algorithm 1 reduces the pattern to the

persistent loop shown in the right panel.

The elementary divisors of the pattern’s measurement matrix are not all 1; they are

all 1 except for a singleton 3 and hence det(M̃I) mod 3 = 0 for all choices of M̃I . To

demonstrate the effect of the resulting phase wrapping on reconstruction, we simulated

noiseless measurements with this pattern and then reconstructed with both the phase and

phasor based approaches. The results are shown in Figure 7. The upper left panel shows

the true image, and the upper right panel shows the projection of the image onto the space

spanned by the Fourier basis functions measured by the array (i.e. the so-called dirty image).
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Figure 6. Example of a pattern containing a Persistent Loop

Figure 7. Reconstruction Results for Y-Pattern Example

Truth Image Interferometric Image

Phase Approach (Noiseless) Phasor Approach (Noiseless)

The lower left panel show the reconstruction result with the SNF-based phase method, and

the lower right panel shows the same for the phasor method using the updates in Equations

(27) and (28). Reconstruction suffers from phase wrapping error in the phase case, and the

corresponding local-minimum trap in the phasor case as discussed in Section 2.2. The closure

phase approach yields the same corruption in reconstruction, as the elementary divisors of

Coc are also all 1 except for a singleton 3.

There are several simple ways to amend this pattern so that it is wrap-invariant. While

the most intuitive of these involve moving the apertures involved in the persistent loop in

Figure 6, these approaches leave gaps in the UV-sampling pattern. An alternate approach

that preserves the UV-sampling is to add an aperture to the center of the pattern as shown

in Figure 8. This results in additional linearly-independent redundancies colored in blue and

green, respectively, in the Figure. These additions replace baselines in the persistent loop,

allowing this loop to be broken. With wrap-invariance, reconstruction results match the true
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Figure 8. Amended Pattern

Existing Apertures
Added Aperture
Loop-Eliminating Baseline Pair 1

Loop-Eliminating Baseline Pair 2

Figure 9. Reconstruction Results for Amended Pattern

Phase Approach (Noiseless) Phasor Approach (Noiseless)

Phase Approach (SNR = 25 dB) Phasor Approach (SNR = 25 dB)

image in both the phase and phasor approaches as respectively shown in Figure 9. In the top

row, reconstruction results are displayed for the phase (left) and phasor (right) approaches

for the noiseless case. Analogous results for an SNR of 25 dB are displayed in the bottom

row. Here we define SNR as the ratio of the phasor magnitude at visibility 1 (i.e. zero spatial

frequency) to the standard deviation of the noise, which we have assumed to be complex

Gaussian and i.i.d. across spatial frequency for this simulation.

4 CONDITIONS FOR WRAP-INVARIANCE UP TO AN IMAGE SHIFT

We have thus far seen two options for ensuring wrap-invariant RSC solutions: (1) computing

the SNF of the phase measurement matrix, and (2) by finding a unimodular submatrix of the

measurement matrix M via selection of a set of d+ (N − 3) linearly-independent equations

and exclusion of two object-phase columns and one aperture-phase column. Both of these

options may become computationally-burdensome for large arrays, as in those under current
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consideration with Nap ≈ 102 and n ≈ 104 baselines (Zheng et al. 2014). In this section we

develop an alternate sufficient condition for wrap invariance which is simpler to verify, as

it does not require the computation of the SNF of the measurement matrix. This condition

applies in any scenario in which an arbitrary, piston-dependent image shift can be tolerated.

Note that the spatial frequencies measured by an array can be represented as two-element

vectors of the form (ωx, ωy). Let X be the d-by-2 matrix containing these spatial frequencies.

Let M̃I again represent the submatrix containing a linearly-independent set of rows of

the measurement matrix. Let us suppose this matrix is not necessarily unimodular for the

scenario in question. Let B = M̃−1
I . Let J denote the indices of the rows of B which

correspond to the object phases associated with spatial frequencies in X. Finally, let e∗h be

the integer error vector introduced in the previous section.

Then the phase-wrap error will manifest itself as an image shift if and only if this error is

a (modulo-2π) phase ramp, i.e. there exists a 2-element shift vector z and an integer vector

k which satisfy

BJ(2πe
∗
h)− 2πXz = 2πk (30)

Dividing through by 2π we obtain the equation: BJe−Xz = k. Note that each element

of BJ can be expressed as some rational number pi
qi
where qi is a divisor of det(M̃I). Similarly

we first assume X contains rational spatial frequencies with greatest common denominator

qx. Then we can multiply through by the least-common-multiple (LCM) of det(M̃I) and qx

to obtain a system of equations whose coefficients are guaranteed to be integer (i.e., we have

a linear Diophantine system). Let this LCM be denoted as l. Then we have, after rearranging

terms,:

lXz = l(BJe− k) (31)

We now wish to determine conditions under which there exist vectors k and z satisfying

this overdetermined Diophantine system. Applying the Smith Normal Form decomposition

(see Section 2.1) to the matrix lX and noting that rank(X) = 2, we have:

DX = UX(lX)VX (32)

where UX and VX are unimodular matrices of size m-by-m and 2-by-2, respectively, and

DX is a rectangular diagonal matrix whose entries are zero below row 2.
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If we left-multiply Equation (31) by U on both sides, we obtain:

lUXXz = lUX(BJe− k) (33)

Using Equation (32) and the fact that V is a unimodular (and hence invertible) matrix,

we can then write:

DXV
−1
X z = l(UXBJe−UXk) (34)

We then arrive at the following proposition:

Proposition 4.1: A pattern is invariant to integer phase ambiguities up to an image

shift if the matrix UBJ contains solely integer entries below row 2.

Proof :

Assume the matrix UXBJ contains solely integer entries below row 2. We re-arrange the

equation above so that it reads:

1

l
DXV

−1
X z−UXBJe = −UXk (35)

Let v = 1
l
DXV

−1
X z−UXBJe. Note that since DX is zero below row 2, the entries of v below

row 2 will be equal to those of (−UXBJe), which are integers by assumption. Now consider

the first and second entries of v. Let f be the vector containing the fractional parts of the

first two elements of vector UXBJe, and let A be the invertible matrix consisting of the

first two rows of 1
l
DXV

−1
X . Choose z∗ = A−1f so that the fractional part f is annihilated,

leaving only integer elements in the first two entries of v. Hence we now have:

v = −UXk (36)

with v ensured to contain only integer elements. Since UX is unimodular, the vector k∗ =

−U−1
X v will be integral. We have thus found a pair (z∗,k∗) with integer k∗ which satisfies

the Equation (34). Since Equation (34) is related to Equation (31) via a unimodular (and

hence invertible) mapping UX, invariance is hence proven. �
To provide an intuitive interpretation of this condition, we revisit the notion of the

generalized closure phase. Let us define a generalized closure phase as an integer linear

combination of object phases which is expressible as an integer linear combination of phase

measurements. Note that in order for a combination of phase measurements to satisfy this

condition, the corresponding baselines must lie on a closed path; otherwise the optical path
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terms within the measurements will not cancel in the combination, thereby violating our

definition.

Next we describe the function of the operator UX obtained via the Smith Normal De-

composition (SNF). The SNF matrices UX and VX associated with a matrix A encode the

row and column operations, respectively, necessary to convert A to diagonal form DX. In

particular, the matrix UX in Equation (34) provides the integer linear combinations required

to express each spatial frequency of X below row 2 in terms of the spatial frequency vectors

in previous rows of X. That is, we have:
i∑

j=1

UijX(j,:) = 0 | ∀i > 2 (37)

where X(j,:) is the j-th row of X. We will call these sums the canceling combinations of the

array’s spatial frequency matrix since they specify how to cancel each new spatial frequency

via a combination of previous spatial frequencies. Now recall that the inverse mapping BJ

maps phase measurements β to object phases θ, i.e. we have:

θ = BJβ (38)

Left-multiplying both sides by UX, we have:

UXθ = UXBJβ (39)

The integrality of UXBJ below row 2 implies that integral linear combinations (namely

the canceling combinations) of object phases can be represented as an integral linear com-

binations of measurements. In other words, Proposition 4.1 is equivalent to the condition

that all of the canceling combinations of the array’s spatial frequencies correspond to a

superposition of generalized closure phases of the array.

Note that verifying the sufficient condition in Proposition 4.1 generally requires compu-

tation of the SNF. However this SNF computation is inherently much faster than the SNF

computation in Section 2, since here we are computing the SNF of a d-by-2 matrix (relative

to a n-by-(d+Nap) in the previous section). Moreover, assuming the unit spatial frequencies

(0, 1) are (1, 0) are measured by the array, we can place these two spatial frequencies at the

top of the matrix X and then the canceling combinations can be read off trivially from the

elements of X.

From the preceding, we can obtain a couple of key properties of arrays that satisfy

Proposition 4.1, which we will call the image shift arrays (ISA):

(i) Any translation, rotation, or scaling of an ISA will also be ISA.
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(ii) Any uniform scaling applied to either of the dimensions of an ISA (i.e. x or y) will

produce an array which is also ISA.

Both Properties follow from the fact that the matrix UXBJ is invariant with respect to

the transformations described. Property (ii) is of interest since it implies that the ISA prop-

erty is preserved, for example, when an array is altered from a checkered square Cartesian

grid to a regular hexagonal grid via a uniform
√
3-scaling along one dimension.

Finally, it is interesting to note that it is highly-probable that a randomized, Cartesian-

gridded aperture pattern is an ISA. To demonstrate this, square grids of various sizes were

constructed upon which apertures were placed in random, uniform fashion, and these ran-

dom arrays were tested for the ISA property. It was ensured that the fraction of gridpoints

occupied by an aperture was constant (at ≈ 0.15) for all grid sizes. This constant value en-

sured that random placements of apertures resulted in reasonably-sparse arrays that were at

least critically-redundant with high probability. The grid sizes and their respective aperture

counts are shown below. We plan to investigate the trend shown in the Figure in a future

paper.

Grid Size Area (No. of gridpoints) No. of apertures

12x12 144 22

14x14 196 29

16x16 256 38

20x20 400 60

24x24 576 86

28x28 784 118

The results of the experiment are shown in Figure 10.
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Figure 10. Empirical ISA Probability

5 CONCLUSIONS

We have examined the effect of phase wrapping in Redundant Spacing Calibration of inter-

ferometric arrays. In particular we have described its fundamental presence in RSC whether

the observables considered are the measured baseline phasors or their phases. Using the

Closest-Vector-Problem formulation due to Lannes (2003), we have developed two sets of

sufficient conditions for an array to be immune to this phase wrapping. From this analysis,

we can outline a general approach for ensuring wrap invariance in array design. If an arbi-

trary image shift in reconstruction can be tolerated, it suffices to verify through a simple

matrix multiplication that canceling combinations of the array’s spatial frequencies can be

mapped onto generalized closure phases (c.f. Section 4). On the other hand, if absolute in-

variance is required, the Smith Normal Form of the measurement matrix can be computed.

If the elementary divisors therein are all 1, the pattern is wrap-invariant and the Redundant

Spacing Calibration solution can be computed as shown in Section 3. Furthermore, we show

that failure to meet this condition amounts to the existence of a particular kind of cycle in

the interferometric graph, and we provide an algorithm for identifying such cycles so that

they can be removed.
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